Plasma Brain Dynamics (PBD): A Mechanism for EEG Waves Under Human Consciousness
نویسنده
چکیده
EEG signals are records of nonlinear solitary waves in human brains. The waves have several types (e.g., α, β, γ, θ, δ) in response to different levels of consciousness. They are classified into two groups: Group-1 consists of complex storm-like waves (α, β, and γ); Group-2 is composed of simple quasilinear waves (θ and δ). In order to elucidate the mechanism of EEG wave formation and propagation, this paper extends the Vlasov-Maxwell equations of Plasma Brain Dynamics (PBD) to a set of two-fluid, self-similar, nonlinear solitary wave equations. Numerical simulations are performed for different EEG signals. Main results include: (1) The excitation and propagation of the EEG wave packets are dependent of electric and magnetic fields, brain aqua-ions, electron and ion temperatures, masses, and their initial fluid speeds; (2) Group-1 complex waves contain three ingredients: the high-frequency ion-acoustic (IA) mode, the intermediate-frequency lower-hybrid (LH) mode, and, the low-frequency ion-cyclotron (IC) mode; (3) Group-2 simple waves fall within the IA band, featured by one or a combination of the three envelopes: sinusoidal, sawtooth, and spiky/bipolar. The study proposes an alternative model to Quantum Brain Dynamics (QBD) by suggesting that the formation and propagation of the nonlinear solitary EEG waves in the brain have the same mechanism as that of the waves in space plasmas.
منابع مشابه
Changes of the brain’s bioelectrical activity in cognition, consciousness, and some mental disorders
Background: An electroencephalogram (EEG) is an accepted method in neurophysiology with a wide application. Different types of brain rhythms indicate that simultaneous activity of the brain cortex neurons depend on the person’s mental state. Method: we have focus on reviewing the existing literature pertaining to changes of the brain’s bioelectrical activity that recorded from the ...
متن کاملA theoretical basis for standing and traveling brain waves measured with human EEG with implications for an integrated consciousness.
OBJECTIVE We propose a theoretical framework for EEG and evoked potential studies based on the single postulate that these data are composed of a combination of waves (as this term is used in the physical sciences) and thalamocortical network activity. METHODS Using known properties of traveling and standing waves, independent of any neocortical dynamic theory, our simple postulate leads to e...
متن کاملEffect of Electrical Stimulation and Lesion of Nucleus Accumbens on EEG of Intact and Addicted Rats
Introduction: The nucleus accumbens is involved in various functions ranging from motivation and reward to feeding and drug addiction. Some researchers have also suggested that this region has some roles in consciousness. In the present study, the effect of electrical stimulation and lesion of nucleus accumbens on Electroencephalogram waves (EEG) of addict and non-addict rats was investigated. ...
متن کاملThe effects of locus coeruleus electrical stimulation on brain waves of morphine dependent rats
Introduction: Opiates cause dependency via affect on central nervous system. Locus coeruleus nucleus is a main group of noradrenergic neurons in the brain that plays an important role in the expression of opioid withdrawal signs. During opioid withdrawal, brain waves change in addition to physical and behavioral signs. In this study, we examined the effects of locus coeruleus electrical sti...
متن کاملThe effects of acute, sub-chronic and chronic psychical stress on the brain electrical activity in male rats
Introduction: Stress is a main factor influencing brain functions as revealed by the electroencephalogram (EEG) recordings. Moreover, different stress durations seemingly cause perturbations in brain waves and lead to mental disorders. This study investigates the effects of acute, sub-chronic and chronic stress on EEG in rats. Methods: Twenty-eight Wistar adult male rats were randomly all...
متن کامل